Sufficient conditions for the solvability of an algebraic inverse eigenvalue problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

In this paper, we first consider the inverse eigenvalue problem as follows: Find a matrix A with specified eigen-pairs, where A is a Hermitian and generalized skewHamiltonian matrix. The sufficient and necessary conditions are obtained, and a general representation of such a matrix is presented. We denote the set of such matrices by LS . Then the best approximation problem for the inverse eigen...

متن کامل

Sufficient conditions for the genericity of feedback stabilisability of switching systems via Lie-algebraic solvability

This paper addresses the stabilisation of discrete-time switching linear systems (DTSSs) with control inputs under arbitrary switching, based on the existence of a common quadratic Lyapunov function (CQLF). The authors have begun a line of work dealing with control design based on the Lie-algebraic solvability property. The present paper expands on earlier work by deriving sufficient conditions...

متن کامل

On an Inverse Eigenvalue Problem for Unitary

We show that a unitary upper Hessenberg matrix with positive subdiago-nal elements is uniquely determined by its eigenvalues and the eigenvalues of a modiied principal submatrix. This provides an analog of a well-known result for Jacobi matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1995

ISSN: 0024-3795

DOI: 10.1016/0024-3795(93)00225-o